Refine Your Search

Topic

Search Results

Technical Paper

A Concept Selection Method Developed from a Probabilistic Multi-Criteria Decision Making Technique Using Utility Theory

2005-10-03
2005-01-3434
In today’s aircraft design, more and more attention is paid to the conceptual and preliminary design stages in order to increase the capability of choosing a design that will be successful. Therefore, the decisions made during these design phases play a central role in determining the success of a design. Decision making techniques at these stages, must manage multiple, conflicting criteria and capture associated uncertainties. The method presented in this study was developed from Joint Probability Decision Making (JPDM), a probabilistic multiple criteria decision making technique. The proposed method eliminated the limitations that JPDM has by utilizing Utility Functions to represent the decision maker’s preference. An advanced rotorcraft concept selection problem is performed in order to demonstrate the improvements, and the results obtained from the proposed method and the JPDM technique are compared with each other.
Technical Paper

Program and Design Decisions in an Uncertain and Dynamic Market: Making Engineering Choices Matter

2005-10-03
2005-01-3433
The success of a modern, complex engineering program is inherently a dynamic economic exercise. Because of this it is not possible to fully grasp what decisions are important to the success of a program using only the typical static or “frozen” design methods and processes. This paper attempts to provide a basic understanding of these design processes and illustrate what they leave to be desired when used in a true market environment. Further, this paper illustrates a dynamic method using tools from engineering, management, and finance to overcome these weaknesses. The dynamic environment allows decision parameters and metrics to change, along with the potential for true competition. Furthermore, it allows the engineer to determine which design choices matter most to the creation of a successful program and how to make the most appropriate choices in the face of uncertainty.
Technical Paper

Variable Cycle Optimization for Supersonic Commercial Applications

2005-10-03
2005-01-3400
Variable cycle engines (VCEs) hold promise as an enabling technology for supersonic business jet (SBJ) applications. Fuel consumption can potentially be minimized by modulating the engine cycle between the subsonic and supersonic phases of flight. The additional flexibility may also contribute toward meeting takeoff and landing noise and emissions requirements. Several different concepts have been and are currently being investigated to achieve variable cycle operation. The core-driven fan stage (CDFS) variable cycle engine is perhaps the most mature concept since an engine of this type flew in the USAF Advanced Tactical Fighter prototype program in the 1990s. Therefore, this type of VCE is of particular interest for potential commercial application. To investigate the potential benefits of a CDFS variable cycle engine, a parametric model is developed using the NASA Numerical Propulsion System Simulation (NPSS).
Technical Paper

Technology Assessment of a Supersonic Business Jet

2005-10-03
2005-01-3393
This paper presents a quantitative process to track the progress of technology developments within NASA’s Vehicle Systems Program (VSP) as implemented on a Supersonic Business Jet (SBJ). The process, called the Technology Metric Assessment and Tracking (TMAT) process, accounts for the temporal aspects of technology development programs such that technology portfolio assessments, in the form of technological progress towards VSP sector goals, may be tracked and assessed. Progress tracking of internal research and development programs is an essential element to successful strategic endeavors and justification of the pursuit of capital projects [1].
Technical Paper

Supersonic Business Jet Design and Requirements Exploration using Multiobjective Interactive Genetic Algorithms

2005-10-03
2005-01-3398
Although market research has indicated that there is significant demand for a supersonic business aircraft, development of a feasible concept has proven difficult. Two factors contributing to this difficulty are the uncertain nature of the vehicle’s requirements and the fact that conventional design methods are inadequate to solve such non-traditional problems. This paper describes the application of a multiobjective genetic algorithm to the design space exploration of such a supersonic business jet. Results obtained using this method are presented, and give insight into the important decisions that must be made at the early stages of a design project.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Technology Portfolio Assessments Using a Multi-Objective Genetic Algorithm

2004-11-02
2004-01-3144
This paper discusses the use of a Multi-Objective Genetic Algorithm to optimize a technology portfolio for a commercial transport. When incorporating technologies into a conceptual design, there are often multiple competing objectives that determine the benefits and costs of a certain portfolio. The set of designs that achieves the best values of these objectives will fall along a Pareto front that outlines the tradeoffs which will give the optimal design. Multi-Objective Genetic Algorithms determine the Pareto set by giving higher priority to dominant portfolios in the evolutionary optimization techniques of selection and reproduction. When determining the final Pareto optimal set it is important to ensure that only compatible portfolios of technologies are present.
Technical Paper

Methodology for the Conceptual Design Process of Morphing Configurations

2004-11-02
2004-01-3127
Traditional historical-data based design processes are clearly inappropriate for morphing vehicles. There are no historical data for these type of configurations, the appropriate mission for this class of vehicles is unknown, and there are many unique aspects of a morphing vehicle that are dependent on the specific concept chosen. The design process proposed in this paper attempts to account for these difficulties in a flexible and transparent manner while leveraging existing tools and processes wherever possible.
Technical Paper

Impact of Sampling Technique Selection on the Creation of Response Surface Models

2004-11-02
2004-01-3134
This paper evaluates and compares a variety of sampling techniques, including both classical and modern Designs of Experiments, to create a more structured approach to selecting the most apt DoE for a specific type of problem. Six different designs are investigated through a design analysis for a notional commercial aircraft. The appropriateness of each sampling technique is determined based on a number of criteria, including code execution time, independent variable correlation, and distribution of data points throughout the design space. Additionally, the resulting models are evaluated using a systematic procedure for checking quality to quantify the accuracy and predictive capability of a given model.
Technical Paper

A Technique for Testing and Evaluation of Aircraft Flight Performance During Early Design Phases

1997-10-01
975541
A technique is proposed for examining complex behaviors in the “pilot - vehicle - operational conditions” system using an autonomous situational model of flight. The goal is to identify potentially critical flight situations in the system behavior early in the design process. An exhaustive set of flight scenarios can be constructed and modeled on a computer by the designer in accordance with test certification requirements or other inputs. Distinguishing features of the technique include the autonomy of experimentation (the pilot and a flight simulator are not involved) and easy planning and quick modeling of complex multi-factor flight cases. An example of mapping airworthiness requirements into formal scenarios is presented. Simulation results for various flight situations and aircraft types are also demonstrated.
Technical Paper

A Method for Concept Exploration of Hypersonic Vehicles in the Presence of Open & Evolving Requirements

2000-10-10
2000-01-5560
Several unique aspects of the design of hypersonic aerospace systems necessitate a truly multidisciplinary approach from the outset of the program. These coupled with a vague or changing requirements environment, provide an impetus for the development of a systematic and unified approach for the exploration and evaluation of alternative hypersonic vehicle concepts. The method formulated and outlined in this paper is founded upon non-deterministic conceptual & preliminary design formulations introduced over the past decade and introduces the concept of viewing system level requirements in a similar manner. The proposed method is then implemented for the concept exploration and design of a Hypersonic Strike Fighter in the presence of ambiguous open and/or evolving requirements.
Technical Paper

Implementation of Parametric Anaylsis to the Aerodynamic Design of a Hypersonic Strike Fighter

2000-10-10
2000-01-5561
A Hypersonic Strike Fighter (HSF) would provide many benefits over current fighters, including increased effectiveness and survivability. However, there are many design challenges to developing such a vehicle. Therefore the conceptual design of an HSF requires the development of new tools and methods to analyze and select vehicle concepts. A parametric method was developed to determine aerodynamic characteristics of hypersonic vehicles in a rapid, automated way. This parametric method and other tools were then used to select a baseline design and optimize this baseline for the notional mission.
Technical Paper

Formulation, Realization, and Demonstration of a Process to Generate Aerodynamic Metamodels for Hypersonic Cruise Vehicle Design

2000-10-10
2000-01-5559
The desire to facilitate the conceptual and preliminary design of hypersonic cruise vehicles has created the need for simple, fast, versatile, and trusted aerodynamic analysis tools. Metamodels representing physics-based engineering codes provide instantaneous access to calibrated tools. Nonlinear transformations extend the capability of metamodels to accurately represent a large design space. Independence, superposition, and scaling properties of the hypersonic engineering method afford an expansive design space without traditional compounding penalties. This one-time investment results in aerodynamic and volumetric metamodels of superior quality and versatility which may be used in many forms throughout early design. As a module, they can be an integral component within a multidisciplinary analysis and optimization package. Aerodynamic polars they produce may provide performance information for mission analysis.
Technical Paper

A Generalized Model for Vehicle Thermodynamic Loss Management and Technology Concept Evaluation

2000-10-10
2000-01-5562
The objective of this paper is to develop a generalized loss management model to account for the usage of thermodynamic work potential in vehicles of any type. The key to accomplishing this is creation of a differential representation for vehicle loss as a function of operating condition. This differential model is then integrated through time to obtain an analytical estimate for total usage (and loss) of work potential consumed by each loss mechanism present during vehicle operation. The end result of this analysis is a better understanding of how the work potential initially present in the fuel, batteries, etc. is partitioned amongst all losses relevant to the vehicle's operation. The loss partitioning estimated from this loss management model can be used in conjunction with cost accounting systems to gain a better understanding of underlying drivers on vehicle manufacturing and operating costs.
Technical Paper

An Automated Robust Process for Physics Based Aerodynamic Prediction

2000-10-10
2000-01-5565
By Combining the Response Surface Methodology with a classical Design of Experiments formulation, a robust method was developed to facilitate the aerodynamic analysis of conceptual designs. These aerodynamic predictions, presented in a parametric form, can then be furnished to a sizing and synthesis code for further evaluation of the concept at the system level. The computational basis of this methodology is a set of numerical codes that work in unison to both optimize the geometry for minimal drag and evaluate key aerodynamic parameters such as lift, friction, wave and induced drag coefficients. Code fidelity and sensitivity to a wide variety of input parameters such as aircraft geometry, panel layout, number of panels used, flow theory used within the numerical code, etc. was investigated. The numerical results were compared with experimental data for different configurations, and the code input parameters required for the best correlation were grouped according to aircraft type.
Technical Paper

A Parametric Design Environment for Including Signatures Analysis in Conceptual Design

2000-10-10
2000-01-5564
System effectiveness has become the prime metric for the evaluation of military aircraft. As such, it is the designer's goal to maximize system effectiveness. Industry documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness. Today's operating environments demand low observable aircraft which are able to reliably eliminate valuable, time critical targets. Thus, it is desirable to be able to evaluate the signatures of a vehicle, as well as the influence of signatures on the systems effectiveness of a vehicle. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section and must be considered from the very beginning of the design process. This research strives to meet these needs by developing a parametric geometry radar cross section prediction tool.
Technical Paper

A Method for Technology Selection Based on Benefit, Available Schedule and Budget Resources

2000-10-10
2000-01-5563
The accepted paradigm in aerospace systems design was to design systems sequentially and iteratively to maximize performance based on minimum weight. The traditional paradigm does not work in the rapidly changing global environment. A paradigm shift from the norm of “design for performance” to “design for affordability and quality” has been occurring in recent decades to respond to the changing global environment. Observations were made regarding new tenets needed to bridge the gap from the old to the new. These tenets include new methods and techniques for designing complex systems due to uncertainty and mulit-dimensionality, consideration of the life cycle of the system, and the methods needed to assess breakthrough technologies to meet aggressive goals of the future. The Technology Identification, Evaluation, and Selection method was proposed as a possible solution to the paradigm shift.
Technical Paper

Use of Flight Simulation in Early Design: Formulation and Application of the Virtual Testing and Evaluation Methodology

2000-10-10
2000-01-5590
In current design practices, safety, operational and handling criteria are often overlooked until late design stages due to the difficulty in capturing such criteria early enough in the design cycle and in the presence of limited and uncertain knowledge. Virtual (flight) testing and evaluation, based on autonomous modeling and simulation, is proposed as a solution to this shortcoming. The methodology enables one to evaluate vehicle behavior in relatively complex situations through a series of specific flight scenarios. Bringing this methodology to conceptual design requires the creation of an automatic link between the design database and the autonomous flight simulation environment. This paper describes the creation of such a link and an implementation of the Virtual Testing and Evaluation methodology with the use of an advanced design concept.
Technical Paper

Methodology for Assessing Survivability Tradeoffs in the Preliminary Design Process

2000-10-10
2000-01-5589
Aircraft survivability is a key metric that contributes to the overall system effectiveness of military aircraft as well as to a lower life cycle cost. The aircraft designer, thus, must have a complete and thorough understanding of the interrelationships between the components of survivability and the other traditional disciplines as well as how they affect the overall life cycle cost of the aircraft. If this understanding occurs, the designer can then evaluate which components and technologies will create the most robust aircraft system with the best system effectiveness at the lowest cost. A synthesis and modeling environment is formulated and presented that will allow trade-off studies and analysis of survivability concepts to be conducted. This environment then becomes the testbed used to develop a comprehensive and structured probabilistic methodology, called the Probabilistic System of System Effectiveness Methodology (POSSEM), that will allow these trades to be conducted.
Technical Paper

Framework for the Assessment of Capacity and Throughput Techologies

2000-10-10
2000-01-5612
The demand for air travel is expanding beyond the capacity of existing airports and air traffic control. This excess traffic often results in delays and compromised safety. Therefore, a number of initiatives to improve airport capacity and throughput have been proposed. However, in order to assess the impact of these technologies on commercial air traffic one must move beyond the vehicle to a system-of-systems point of view. This top-level point of view must include consideration of the aircraft, airports, air traffic management and airlines that make up the airspace system. In addition to the analyses of each of these components and their interactions, a thorough investigation of capacity and throughput technologies requires due consideration of other pressures such as economics, safety and government regulations. Furthermore, the air traffic system is inherently variable with constant changes in everything from fuel prices to the weather.
X